该资源由用户: 念之来了 上传 举报不良内容
For solving complex problems in mathematics, science, or engineering, SciPy is the solution. Building on your basic knowledge of Python, and using a wealth of examples from many scientific fields, this book is your expert tutor. Overview Perform complex operations with large matrices, including eigenvalue problems, matrix decompositions, or solution to large systems of equations. Step-by-step examples to easily implement statistical analysis and data mining that rivals in performance any of the costly specialized software suites. Plenty of examples of state-of-the-art research problems from all disciplines of science, that prove how simple, yet effective, is to provide solutions based on SciPy. In Detail It`s essential to incorporate workflow data and code from various sources in order to create fast and effective algorithms to solve complex problems in science and engineering. Data is coming at us faster, dirtier, and at an ever increasing rate. There is no need to employ difficult-to-maintain code, or expensive mathematical engines to solve your numerical computations anymore. SciPy guarantees fast, accurate, and easy-to-code solutions to your numerical and scientific computing applications. "Learning SciPy for Numerical and Scientific Computing" unveils secrets to some of the most critical mathematical and scientific computing problems and will play an instrumental role in supporting your research. The book will teach you how to quickly and efficiently use different modules and routines from the SciPy library to cover the vast scope of numerical mathematics with its simplistic practical approach that`s easy to follow. The book starts with a brief description of the SciPy libraries, showing practical demonstrations for acquiring and installing them on your system. This is followed by the second chapter which is a fun and fast-paced primer to array creation, manipulation, and problem-solving based on these techniques. What you will learn from this book Learn to store and manipulate large arrays of data in any dimension. Accurately evaluate any mathematical function in any given dimension, as well as its integration, and solve systems of ordinary differential equations with ease. Learn to deal with sparse data to perform any known interpolation, extrapolation, or regression scheme on it. Perform statistical analysis, hypothesis test design and resolution, or data mining at high level, including clustering (hierarchical or through vector quantization), and learn to apply them to real-life problems. Get to grips with signal processing — filtering audio, images, or video to extract information, features, or removing components. Effectively learn about window functions, filters, spectral theory, LTY systems theory, morphological operations, and image interpolation. Acquaint yourself with the power of distances, Delaunay triangulations, and Voronoi diagrams for computational geometry, and apply them to various engineering problems. Wrap code in other languages directly into your SciPy-based workflow, as well as incorporating data written in proprietary format (audio or image, for example), or from other software suites like Matlab/Octave. Approach A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy.
尊敬的读者:
欢迎您访问我们的网站。本站的初衷是为大家提供一个共享学习资料、交换知识的平台。每位用户都可以将文件上传至网盘并分享。
然而,随着用户上传的资料增多,我们发现部分不宜或版权问题的书籍被分享到了本站。
为此,我们已经关闭了分享入口,并进行了多次书籍审查,但仍有部分内容未能彻底审查到位。
在此,我们恳请广大读者与我们共同监督,如发现任何不宜内容,请 点击此处 进行举报,我们会第一时间处理并下架相关内容。
希望我们能共建一个文明社区!感谢您的理解与支持!
扫一扫即可关注本站(PDF之家)微信公众账号
发送您想要找的书籍名称即可找到书籍
本站为非盈利性网站, 但服务器成本高昂, 如果本站内容对您有帮助, 欢迎捐赠, 您的鼓励是我们最大的动力!
本站资源来源于网络及个人用户网盘上传,仅用于分享知识,学习和交流! 本站不保存,不制作,不出售任何图书。请您下载完在24小时内删除。 资源禁用于商业用途!如果您喜欢本站资源,请购买正版,谢谢合作!
扫码支持一下: