该资源由用户: 是瑞芝吖 上传 举报不良内容
本书由斯坦福大学“Web挖掘”课程的内容总结而成,主要关注极大规模数据的挖掘。主要内容包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统。其中相关章节有对应的习题,以巩固所讲解的内容。读者更可以从网上获取相关拓展材料。
第1 章 数据挖掘基本概念 1
1.1 数据挖掘的定义 1
1.1.1 统计建模 1
1.1.2 机器学习 1
1.1.3 建模的计算方法 2
1.1.4 数据汇总 2
1.1.5 特征抽取 3
1.2 数据挖掘的统计限制 4
1.2.1 整体情报预警 4
1.2.2 邦弗朗尼原理 4
1.2.3 邦弗朗尼原理的一个例子 5
1.2.4 习题 6
1.3 相关知识 6
1.3.1 词语在文档中的重要性 6
1.3.2 哈希函数 7
1.3.3 索引 8
1.3.4 二级存储器 9
1.3.5 自然对数的底e 10
1.3.6 幂定律 11
1.3.7 习题 12
1.4 本书概要 13
1.5 小结 14
1.6 参考文献 15
第2 章 MapReduce及新软件栈 16
2.1 分布式文件系统 17
2.1.1 计算节点的物理结构 17
2.1.2 大规模文件系统的结构 18
2.2 MapReduce 19
2.2.1 Map 任务 20
2.2.2 按键分组 20
2.2.3 Reduce 任务 21
2.2.4 组合器 21
2.2.5 MapReduce 的执行细节 22
2.2.6 节点失效的处理 23
2.2.7 习题 23
2.3 使用MapReduce 的算法 23
2.3.1 基于MapReduce 的矩阵—向量
乘法实现 24
2.3.2 向量v 法放入内存时的处理 24
2.3.3 关系代数运算 25
2.3.4 基于MapReduce 的选择运算 27
2.3.5 基于MapReduce 的投影运算 27
2.3.6 基于MapReduce 的并、交和差运算 28
2.3.7 基于MapReduce 的自然连接运算 28
2.3.8 基于MapReduce 的分组和聚合运算 29
2.3.9 矩阵乘法 29
2.3.10 基于单步MapReduce 的矩阵乘法 30
2.3.11 习题 31
2.4 MapReduce 的扩展 31
2.4.1 工作流系统 32
2.4.2 MapReduce 的递归扩展版本 33
……
尊敬的读者:
欢迎您访问我们的网站。本站的初衷是为大家提供一个共享学习资料、交换知识的平台。每位用户都可以将文件上传至网盘并分享。
然而,随着用户上传的资料增多,我们发现部分不宜或版权问题的书籍被分享到了本站。
为此,我们已经关闭了分享入口,并进行了多次书籍审查,但仍有部分内容未能彻底审查到位。
在此,我们恳请广大读者与我们共同监督,如发现任何不宜内容,请 点击此处 进行举报,我们会第一时间处理并下架相关内容。
希望我们能共建一个文明社区!感谢您的理解与支持!